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Introduction

T HE general three-body problem has a long history1−4 with con-
tributions from many researchers. It is well known that the gen-

eral problem cannot be solved analytically.5 However some special
cases, such as the restricted three-body problem (where one of the
three bodies has negligible mass as compared to the other two) or
the general problem with two equal masses, have some particular
solutions.6−9 Under these circumstances it is appropriate to reformu-
late the general problem in special coordinate systems so that proper
applications10−12 can be solved accurately either numerically13 or
via perturbations.

An important application of the three-body problem is the ren-
dezvous question14−16 between a celestial body and a spacecraft
in the presence of another large central body (e.g., a rendezvous
between a large asteroid and spacecraft far from any planet in the
gravitational field of the sun). Such a problem belongs to the class
of the restricted three-body problems. In a previous paper9 we refor-
mulated this problem in “rendezvous coordinates,” that is, in terms
of the relative position of the spacecraft with respect to the celes-
tial body it attempts to intercept. We were able also to reduce this
problem to a simple system of differential equations by some trans-
formations.

In recent years, however, there was a growing concern about the
possible collision between Earth and a “large” asteroid in near-Earth
orbit. Such a collision might cause a catastrophe to the biosphere on
Earth. This (and other similar problems) motivates us to consider in
this Note the motion of two celestial bodies of similar masses in the
presence of a third large body (e.g., the sun) and rewrite the equa-
tions of motion in terms of the relative position between these two
celestial bodies. Such a reformulation of the problem can determine
whether the two bodies are on a collision (or capture) course and
the minimum distance that will be attained between them. Thus in
this Note we are treating the rendezvous problem within the context
of the general two-dimensional three-body problem rather than just
the restricted three-body problem, which was considered in Ref. 9.

From a numerical point of view, as the distance between the two
colliding bodies decreases the gravitational attraction between them
increases, and this might lead to inaccuracies in the numerical solu-
tion of this problem. This “regularization” problem was addressed
in the past by at least two authors.10,11 In both cases complex co-
ordinates were introduced. The problem becomes then somewhat
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physically intractable, and only the combined use of symbolic and
numerical algorithms allows the final derivation of the equations
and their simulation.13 As a result, some physical insight into this
problem is lost. The equations derived in this Note do not address the
regularization problem. However, the equations are formulated in
terms of physical coordinates, and the independent variable is one of
the angle variables. As a result, the problem is reduced to seven rather
than eight (first-order) equations, and one of the dependent variables
is the angular momentum of one of the bodies in the system. Further-
more, the long-term integration of these equations remains stable.

The plan of this Note is as follows. At first we present the gen-
eral formulation of the problem and derive the orbit equations for
the colliding bodies. We then recast the equations of motion in ren-
dezvous coordinates and apply several transformations to simplify
them. Two special cases of the general problem are considered next.
The first is the restricted three-body problem. The second considers
the case where two of the three bodies in the system have equal
mass. Finally we discuss the numerical solution of the rendezvous
equations and end up with summary and conclusions.

Formulation of the Problem
In this Note we consider the three-body problem under the as-

sumption that the mass of the central body (the primary, whose
mass is M) is much larger than the masses of the other two bodies
in the system whose mass are m1 and m2, respectively, and m1 < m2.
(However, we do not assume that m1 is insignificant as compared to
m2.) With these assumptions the (approximate) equations of motion
of m1, m2 are
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In these equations r1, r2 are the positions of m1, m2 with respect
to the primary and r12 = r1 − r2.

Taking the vector products of Egs. (1) and (2) with r1 and r2,
respectively, we obtain
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where L1 and L2 are the angular momentum of m1 and m2, respec-
tively. From these equations we infer that if the initial L1, L2 are
orthogonal to the plane of r1, r2, then they will remain always orthog-
onal to this plane. It follows then that L1, L2 have constant direction
and the motion remains planar. In the following we consider only
the planar three-body problem and assume that L1, L2 are along the
z axis). We observe, however, that neither L1 nor L2 is conserved in
this problem. However, if m1 = m2, then

d

dt
(L1 + L2) = 0 (7)

i.e., L1 + L2 = constant.
553
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If we now let the polar coordinates of m1 and m2 be (r1, φ) and
(r2, θ), respectively, we then have from Eq. (6) that

d
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2 θ̇
) = − Gm1

r 3
12

(r1 × r2) · k (8)

Integrating this equation with respect to time yields

r 2
2 θ̇ = −

∫
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r 3
12

(r1 × r2) · k dt = A (9)

where A = A(r1, r2, θ, φ). However if we assume that the relation
θ = θ(t) can be inverted, at least locally, then formally A = A(θ),
and we can rewrite the relation (9) in the form
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Using this relation, we can rewrite the radial equation of motion for
m2
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where primes denote differentiation with respect to θ . This is the
orbit equation for m2. A similar equation can be derived for m1.

Equation for r12

In this section we derive the equations of motion in rendezvous
coordinates, that is, replace the equation for r1 by an appropriate
(but approximate) equation for r12. Rewriting r1 = r2 + r12 and sub-
stituting in Eq. (1), we obtain
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Using Eq. (2), this yields
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This is the equation for r12 in the inertial coordinate system. We now
transform this equation to one that is centered in m2. This leads to
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where � = (0, 0, ω). We now introduce a coordinate system at-
tached to m2 so that the x1 axis is tangential but opposed to its
motion. The x2 axis is in the direction of r2, and x3 completes a right-
handed system.(This coordinate system was used in Refs. 16 and
17 to discuss the rendezvous problem of a spacecraft with a satellite
in the gravitational field of the Earth.) In this frame r12 = (x, y, 0)
and r2 = r2(0, 1, 0). Rewriting Eq. (15) in this frame leads to the
following system of equations:
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Transformation of the Rendezvous Equations
To reduce Eqs. (16) and (17), we first make a change of the

independent variable from time to θ . This leads to
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where primes denote differentiation with respect to θ . These can be
rewritten as
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We now introduce
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After some long algebra, Eqs. (20) and (21) take the form
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where
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1
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Using Eq. (10) to substitute for ω and its derivatives, we have
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However, from the orbit equation and Eq. (10), we have also
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We can simplify these equations if we assume that r12 � r1,
r12 � r2 and use a first-order Taylor expansion to make the following
approximation:
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Substituting this approximation in Eqs. (28) and (29), we finally
obtain
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These equations together with Eqs. (10) and (12) provide the
required formulation of our problem in rendezvous coordinates. (For
further elaboration of the numerical solution of this system, the
Numerical Formulation section.)

Two Special Cases
Restricted Three-Body Problem

When m1 has negligible mass, A can be treated as a constant,
and the terms containing m1 in Eqs. (28) and (29) can be neglected.
Under these conditions Eqs. (28) and (29) form an independent sys-
tem for the motion of m1 provided that the orbit of m2 is known.
Such a situation arises for example when one considers the motion
of a satellite orbiting in the Earth–moon system or a spacecraft from
Earth traveling toward the moon. Further discussion of the result-
ing equations was carried out by the present author in a previous
publication.9

Fig. 1 Orbit of m1 around m2 until it is released because of its large angular momentum and by a proper alignment of the three bodies.

m1 = m2

When m1 = m2, it is advantageous to reformulate the problem in
term of R = r1 + r2 and r = r12. Taking the sum and difference of
Eqs. (1) and (2), we obtain
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Assuming that r � R, we can apply the following approximations
to these equations:
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Neglecting the nonlinear terms in r, we finally obtain
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We deduce then that under the approximations introduced here
R traces out a Keplerian orbit. In a coordinate system rotating with
R (similar to the centered at m2, which was introduced in the third
section), Eq. (40) becomes
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The reduction and solution of this equation has been treated at
length in Ref. 14. (Similar treatment of this equation in a general
central force was carried out in Ref. 17.)

Further elaboration of the two special cases discussed in this
section will be carried out in a separate publication.
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Numerical Formulation
To carry out numerical simulations of the three-body problem

in rendezvous coordinates, we combine Eqs. (8) and (9) and the
definition of r12 to obtain
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12

r12 × r2 · k (42)

Using a polar representation of r2 and expressing r12 in terms of
σ, this leads to
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σ 3
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Changing the independent variable from t to θ , we finally obtain

dA

dθ
= − Gm1r2

σ 3
u (44)

Fig. 2 Orbit of m1 around m2 for the first 104 days of its capture (second simulation).

Fig. 3 Orbit of m1 around m2 for the last 104 days of the second simulation.

Equations (12), (28), (29) (with ω being replaced by A/r 2
2 ), and

(44) form a complete system for the numerical solution of the three-
body problem in terms of seven first-order equations. However if
r12 � r1, r12 � r2, we can replace Eqs. (28) and (29) by Eqs. (30)
and (31).

As an actual application of these equations, we consider the sun–
Earth–moon system.18

As is well known, there are several competing theories regarding
the origin of the Earth–moon system. One of this theories is that
the moon was captured by Earth in the early evolution of the solar
system. Such a theory explains naturally the composition difference
between the Earth and the moon (which does not have an iron core).
However, there are some major objections to this theory, foremost
of which is the slowdown in the moon velocity that is needed for
this capture to happen.

In the following we simulate the three-body problem for a sys-
tem in which m1 and m2 have the same masses as the moon and
Earth using the equations derived in this Note. To initiate these
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Fig. 4 Impact of the m1 capture on the orbit of m2 during the last 104 days of the second simulation.

simulations, we assume that a time zero m2 (Earth) is in a stable
circular orbit at a distance of 1.5 × 108 km from the sun. We then
used various initial conditions for the relative distance and velocity
of m1 to determine those that will lead to the capture of m1 by m2

and the impact of this capture on the orbit of m2. The time step in
these simulations was one day (86,400 s, which translates to �θ of
0.00172) for a duration 5 × 105 days. (In the simulations we used
the initial radius of the Earth orbit as a unit length.) To integrate the
equations, we used the Runge–Kutta algorithm of order 7–8 with
tolerance of 10−8 at each step. The results of two of these simulations
are presented in Figs. 1–4. In both of these simulations, the initial
relative distance was 1.5 × 106 km, and the initial relative velocity
(of the moon with respect to the Earth) was (0, 1.3), (0, 1) km/s,
respectively.

For the first set of initial conditions, we obtained a temporary
capture, that is, the moon was captured for some time in Earth orbit,
but eventually with proper alignment of the three bodies it was
released from Earth orbit. (Figure 1 shows the orbit of m1 until it
is released.) In the second simulation m1 is captured permanently.
Figures 2 and 3 show its orbit for the first and last 104 days of the
simulation. Figure 4 shows the impact of of this capture on the orbit
of m2.

From these simulations we infer that the initial relative velocity
of the moon with respect to the Earth must be close to 1 km/s for
such a capture to take place.

Conclusions
The three-body problem is a classical problem that has attracted a

lot of attention in the past and is the subject of ongoing research. In
this Note we concentrated on the practical aspects of this problem in
view of recent “near-miss collisions” between Earth and asteroids
in near-Earth orbit. In these situations it is important to solve the
problem in rendezvous coordinates that are robust from a numer-
ical and practical point of view. In particular our formulation will
be useful when, initially, the two bodies are not too close to each
other, and one would like to compute the long-term evolution of the
system.

From a theoretical point of view, the equations we derived for the
general three-body problem show clearly how the corresponding
equations for the restricted three-body problem are obtained as a
limit of the more general equations.
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